Differentiation Exercise A, Question 1

Question:

Differentiate with respect to x. sinh 2x

Solution:

 $\frac{\mathrm{d}}{\mathrm{d}x}\left(\sinh 2x\right) = 2\cosh 2x$

Differentiation Exercise A, Question 2

Question:

Differentiate with respect to x. cosh 5x

Solution:

$$\frac{d}{dx}(\cosh 5x) = \frac{-1}{(\cosh 2x)^2} \times 2\sinh 2x$$
$$= -2\frac{\sinh 2x}{\cos 2x} \times \frac{1}{\cos 2x}$$
$$= -2\tan 2x \operatorname{sech} 2x$$

Differentiation Exercise A, Question 3

Question:

Differentiate with respect to x. tanh 2x

Solution:

 $\frac{\mathrm{d}}{\mathrm{d}x}(\tanh 2x) = 2\mathrm{sech}^2 2x$

Differentiation Exercise A, Question 4

Question:

Differentiate with respect to x. sinh 3x

Solution:

 $\frac{\mathrm{d}}{\mathrm{d}x}(\sinh 3x) = 3\cosh 3x$

Differentiation Exercise A, Question 5

Question:

Differentiate with respect to x. coth 4x

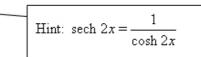
Solution:

 $\frac{\mathrm{d}}{\mathrm{d}x}(\coth 4x) = -4 \mathrm{cosech}^2 4x$

Differentiation Exercise A, Question 6

Question:

Differentiate with respect to x. sech 2x



Solution:

$$\frac{d}{dx}(\operatorname{sech} 2x) = \frac{-1}{(\cosh 2x)^2} \times 2\sinh 2x$$
$$= -2\frac{\sinh 2x}{\cosh 2x} \times \frac{1}{\cosh 2x}$$
$$= -2\tanh 2x \operatorname{sech} 2x$$

Differentiation Exercise A, Question 7

Question:

Differentiate with respect to x. $e^{-x} \sinh x$

Solution:

 $\frac{\mathrm{d}}{\mathrm{d}x} (\mathrm{e}^{-x} \sinh x) = -\mathrm{e}^{-x} \sinh x + \mathrm{e}^{-x} \cosh x$ $= \mathrm{e}^{-x} (\cosh x - \sinh x)$

Differentiation Exercise A, Question 8

Question:

Differentiate with respect to x. $x \cosh 3x$

Solution:

 $\frac{\mathrm{d}}{\mathrm{d}x}(x\cosh 3x) = \cosh 3x + 3x\sinh 3x$

Differentiation Exercise A, Question 9

Question:

Differentiate with respect to x. $\underline{\sinh x}$

3х

Solution:

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{\sinh x}{3x}\right) = \frac{\cosh x}{3x} - \frac{\sinh x}{3x^2}$$
$$= \frac{x\cosh x - \sinh x}{3x^2}$$

Differentiation Exercise A, Question 10

Question:

Differentiate with respect to x. $x^2 \cosh 3x$

Solution:

$$\frac{\mathrm{d}}{\mathrm{d}x}(x^2\cosh 3x) = 2x\cosh 3x + x^2 \times 3\sinh 3x$$
$$= x(2\cosh 3x + 3x\sinh 3x)$$

Differentiation Exercise A, Question 11

Question:

Differentiate with respect to x. sinh $2x \cosh 3x$

Solution:

 $\frac{d}{dx}(\sinh 2x \cosh 3x) = 2\cosh 2x \cosh 3x + \sinh 2x \times 3\sinh 3x$ $= 2\cosh 2x \cosh 3x + 3\sinh 2x \sinh 3x$

Differentiation Exercise A, Question 12

Question:

Differentiate with respect to x. $\ln(\cosh x)$

Solution:

 $\frac{\mathrm{d}}{\mathrm{d}x}(\ln\cosh x) = \frac{1}{\cosh x} \times \sinh x$ $= \tanh x$

Differentiation Exercise A, Question 13

Question:

Differentiate with respect to x. sinh x^3

Solution:

 $\frac{\mathrm{d}}{\mathrm{d}x}(\sinh x^3) = 3x^2 \cosh x^3$

Differentiation Exercise A, Question 14

Question:

Differentiate with respect to x. $\cosh^2 2x$

Solution:

 $\frac{d}{dx}(\cosh^2 2x) = 2\cosh 2x 2\sinh 2x$ $= 4\cosh 2x \sinh 2x$

Differentiation Exercise A, Question 15

Question:

Differentiate with respect to x. $e^{\cosh x}$

Solution:

 $\frac{\mathrm{d}}{\mathrm{d}x} \left(\mathrm{e}^{\cosh x} \right) = \sinh x \mathrm{e}^{\cosh x}$

Differentiation Exercise A, Question 16

Question:

Differentiate with respect to x. cosech x Hint: cosech $x = \frac{1}{\sinh x}$.

Solution:

$$\frac{d}{dx}(\operatorname{cosech} x) = \frac{d}{dx}\left(\frac{1}{\sinh x}\right) = \frac{0 - 1 \times \cosh x}{\sinh^2 x}$$
$$= -\coth x \operatorname{cosech} x$$

Differentiation Exercise A, Question 17

Question:

If $y = a \cosh nx + b \sinh nx$, where a and b are constants, prove that $\frac{d^2y}{dx^2} = n^2y$.

Solution:

 $y = a \cosh nx + b \sinh nx$ Differentiate with respect to x $\frac{dy}{dx} = an \sinh nx + nb \cosh nx$ $\frac{d^2y}{dx^2} = an^2 \cosh nx + bn^2 \sinh nx$ $= n^2 (a \cosh nx + b \sinh nx)$ $\frac{d^2y}{dx^2} = n^2 y$

Differentiation Exercise A, Question 18

Question:

Find the stationary values of the curve with equation $y = 12\cosh x - \sinh x$.

Solution:

 $y = 12\cosh x - \sinh x$ $\frac{dy}{dx} = 12\sinh x - \cosh x$ At stationary values $\frac{dy}{dx} = 0$ $0 = 12\sinh x - \cosh x$ $\cosh x = 12\sinh x$ $\frac{1}{12} = \tanh x$ $x = \tanh^{-1}\frac{1}{12}$ x = 0.0835The stationary value is therefore $y = 12\cosh 0.0835 - \sinh 0.0835$ = 12.13

Differentiation Exercise A, Question 19

Question:

Given that
$$y = \cosh 3x \sinh x$$
, find $\frac{d^2y}{dx^2}$.

Solution:

$$y = \cosh 3x \sinh x$$

$$\frac{dy}{dx} = 3\sinh 3x \sinh x + \cosh 3x \cosh x$$

$$\frac{d^2y}{dx^2} = 9\cosh 3x \sinh x + 3\sinh 3x \cosh x + 3\sinh 3x \cosh x + \cosh 3x \sinh x$$

$$= 10\cosh 3x \sinh x + 6\sinh 3x \cosh x$$

$$= 2(5\cosh 3x \sinh x + 3\sinh 3x \cosh x)$$

Differentiation Exercise A, Question 20

Question:

Find the equation of the tangent and normal to the hyperbola $\frac{x^2}{256} - \frac{y^2}{16} = 1$ at the point

 $(16 \cosh q, 4 \sinh q).$

Solution:

$$\frac{dy}{dx} = \frac{\frac{dy}{dq}}{\frac{dx}{dq}} = \frac{4\cosh q}{16\sinh q} = \frac{\cosh q}{4\sinh q}$$

Equation of tangent
$$y - 4\sinh q = \frac{\cosh q}{4\sinh q} (x - 16\cosh q)$$

$$4y\sinh q - 16\sinh^2 q = x\cosh q - 16\cosh^2 q$$

$$4y\sinh q - x\cosh q = 16(\sinh^2 q - \cosh^2 q)$$

$$4y\sinh q - x\cosh q = -16$$

or $x\cosh q - 4y\sinh q = 16$
Equation of normal
$$y - 4\sinh q = \frac{-4\sinh q}{\cosh q} (x - 16\cosh q)$$

i.e. $y\cosh q - 4\sinh q \cosh q = -4x\sinh q + 64\sinh q \cosh q$

i.e. $y \cosh q + 4x \sinh q = 68 \sinh q \cosh q$

Differentiation Exercise B, Question 1

Question:

- Differentiate
- **a** $\operatorname{arcosh} 2x$
- **b** $\operatorname{arsinh}(x+1)$
- \mathbf{c} artanh 3x
- **d** arsech x
- e arcosh x^2
- f arcosh 3x
- \mathbf{g} $x^2 \operatorname{arcosh} x$

h arsinh $\frac{x}{2}$

- $i e^{x^3} arsinhx$
- \mathbf{j} arsinh \mathbf{x} arcosh \mathbf{x}
- \mathbf{k} arcosh x sech x
- $1 x \operatorname{arcosh} 3x$

Solution:

a Let $y = \operatorname{arcosh} 2x$ then $\cosh y = 2x$ Differentiate with respect to x

$$\sinh y \frac{dy}{dx} = 2$$

$$\frac{dy}{dx} = \frac{2}{\sinh y}$$

$$= \frac{2}{\sqrt{\cosh^2 y - 1}} \text{ but } \cosh y = 2x$$

$$\sin \frac{dy}{dx} = \frac{2}{\sqrt{4x^2 - 1}}$$

b Let $y = \operatorname{arsinh}(x+1)$ then $\sinh y = x+1$

$$\cosh y \frac{\mathrm{d}y}{\mathrm{d}x} = 1$$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\cosh y}$$

$$= \frac{1}{\sqrt{\sinh^2 y + 1}} \text{ but } \sinh y = x + 1$$

$$\operatorname{so} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{(x+1)^2 + 1}}$$

c Let $y = \operatorname{artanh} 3x$

$$\tanh y = 3x$$
$$\operatorname{sech}^{2} y \frac{\mathrm{d}y}{\mathrm{d}x} = 3$$
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{\operatorname{sech}^{2} y}$$
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{1 - \tanh^{2} y}$$
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{1 - \tanh^{2} y}$$

d Let $y = \operatorname{arsech} x$ $\operatorname{sech} y = x$ $\frac{1}{\cosh y} = x$ $1 = x \cosh y$ Differentiate with respect to x $0 = \cosh y + x \sinh y \frac{\mathrm{d}y}{\mathrm{d}x}$ $x \sinh y \frac{\mathrm{d}y}{\mathrm{d}x} = -\cosh y$ $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-\cosh y}{x\sinh y}$ $=\frac{1}{x \tanh y}$ $=\frac{1}{x\left(1-\operatorname{sech}^2 y\right)^{\frac{1}{2}}}$ $=\frac{-1}{x(1-x^2)^{\frac{1}{2}}}$ e Let $y = \operatorname{arcosh} x^2$ Let $t = x^2$ $y = \operatorname{arcosh} t$ $\frac{\mathrm{d}t}{\mathrm{d}x} = 2x\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{1}{\sqrt{t^2 - 1}}$ $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x}{\sqrt{x^4 - 1}}$ f $y = \operatorname{arcosh} 3x$ Let t = 3x $y = \operatorname{arcosh} t$ $\frac{\mathrm{d}t}{\mathrm{d}x} = 3\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{t^2 - 1}}$

$$\frac{dy}{dx} = \frac{3}{\sqrt{9x^2 - 1}}$$

$$g \quad y = x^2 \operatorname{arcosh} x$$

$$\frac{dy}{dx} = 2x \operatorname{arcosh} x + \frac{x^2}{\sqrt{x^2 - 1}}$$

h
$$y = \operatorname{arsinh} \frac{x}{2}$$

Let $t = \frac{x}{2}$ $y = \operatorname{arsinh} t$
 $\frac{dt}{dx} = \frac{1}{2}$ $\frac{dy}{dt} = \frac{1}{\sqrt{t^2 + 1}}$
 $\frac{dy}{dx} = \frac{1}{2\sqrt{\left(\frac{x}{2}\right)^2 + 1}}$
 $= \frac{1}{\sqrt{x^2 + 4}}$

i $y = e^{x^3} \operatorname{arsinh} x$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 \mathrm{e}^{x^3} \mathrm{ar \sinh}x + \frac{\mathrm{e}^{x^3}}{\sqrt{x^2 + 1}}$$

 \mathbf{j} $y = \operatorname{arsinh} x \operatorname{arcosh} x$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{x^2 + 1}}\operatorname{arcosh} x + \frac{1}{\sqrt{x^2 - 1}}\operatorname{arsinh} x$$

- k $y = \operatorname{arcosh} x \operatorname{sech} x$ $\frac{dy}{dx} = \frac{1}{\sqrt{x^2 - 1}} \operatorname{sech} x - \operatorname{arcosh} x \tanh x \operatorname{sech} x$ $= \operatorname{sech} x \left(\frac{1}{\sqrt{x^2 - 1}} - \operatorname{arcosh} x \tanh x \right)$
- 1 $y = x \operatorname{arcosh} 3x$ $\frac{dy}{dx} = \operatorname{arcosh} 3x + x \times \frac{3}{\sqrt{9x^2 - 1}}$

Differentiation Exercise B, Question 2

Question:

Prove that
a
$$\frac{d}{dx}(\operatorname{arcosh} x) = \frac{1}{\sqrt{x^2 - 1}}$$

b $\frac{d}{dx}(\operatorname{artanh} x) = \frac{1}{1 - x^2}$

Solution:

a
$$y = \operatorname{arcosh} x$$

 $\operatorname{cosh} y = x$
 $\operatorname{sinh} y \frac{\mathrm{d}y}{\mathrm{d}x} = 1 \Rightarrow$
 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sinh y} = \frac{1}{\sqrt{\cosh^2 y - 1}}$
but $\operatorname{cosh} y = x$ so
 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\sqrt{x^2 - 1}}$
b $y = \operatorname{artanh} x$
 $\tanh y = x$
 $\operatorname{sech}^2 y \frac{\mathrm{d}y}{\mathrm{d}x} = 1$
 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\operatorname{sech}^2 y} = \frac{1}{1 - \tanh^2 y}$
but $\tanh y = x$ so
 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1 - x^2}$

Differentiation Exercise B, Question 3

Question:

Given that
$$y = \operatorname{artanh}\left(\frac{e^x}{2}\right)$$
, prove that $(4 - e^{2x})\frac{dy}{dx} = 2e^x$.

Solution:

$$y = \operatorname{artanh} \frac{e^{x}}{2}$$
Let $t = \frac{e^{x}}{2}$ $y = \operatorname{artanh} t$

$$\frac{dt}{dx} = \frac{e^{x}}{2}$$
 $\frac{dy}{dt} = \frac{1}{1-t^{2}}$
Then $\frac{dy}{dx} = \frac{1}{1-t^{2}} \times \frac{e^{x}}{2}$

$$= \frac{1}{1-\left(\frac{e^{x}}{2}\right)^{2}} \times \frac{e^{x}}{2}$$

$$= \frac{\frac{e^{x}}{2}}{\frac{4-e^{2x}}{4}}$$

$$\frac{dy}{dx} = \frac{2e^{x}}{4-e^{2x}}$$
 $(4-e^{2x})\frac{dy}{dx} = 2e^{x}$

Differentiation Exercise B, Question 4

Question:

Given that $y = \operatorname{arsinh} x$, show that

$$(1+x^2)\frac{d^3y}{dx^3} + 3x\frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$$

Solution:

$$y = \operatorname{ar sinh} x$$

$$\frac{dy}{dx} = \frac{1}{\sqrt{x^2 + 1}} = (x^2 + 1)^{-\frac{1}{2}}$$

$$\frac{d^2 y}{dx^2} = -\frac{1}{2}(x^2 + 1)^{-\frac{3}{2}} \times 2x$$

$$= \frac{-x}{(x^2 + 1)^{\frac{3}{2}}}$$

$$\frac{d^3 y}{dx^3} = \frac{-1(x^2 + 1)^{\frac{3}{2}} - \frac{3}{2}(x^2 + 1)^{\frac{1}{2}} \times 2x \times -x}{(x^2 + 1)^3}$$

$$= \frac{3x^2(x^2 + 1)^{\frac{1}{2}} - (x^2 + 1)^{\frac{3}{2}}}{(x^2 + 1)^3}$$

$$= \frac{3x^2}{(x^2 + 1)^{\frac{5}{2}}} - \frac{1}{(x^2 + 1)^{\frac{3}{2}}}$$

$$(x^2 + 1)\frac{d^3 y}{dx^3} = \frac{3x^2}{(x^2 + 1)^{\frac{3}{2}}} - \frac{1}{(x^2 + 1)^{\frac{3}{2}}}$$

$$(x^2 + 1)\frac{d^3 y}{dx^3} = \frac{3x^2}{(x^2 + 1)^{\frac{3}{2}}} - \frac{1}{(x^2 + 1)^{\frac{3}{2}}}$$

$$= -3x\frac{d^2 y}{dx^2} - \frac{dy}{dx}$$

$$\therefore (1 + x^2)\frac{d^3 y}{dx^3} + 3x\frac{d^2 y}{dx^2} + \frac{dy}{dx} = 0$$

Differentiation Exercise B, Question 5

Question:

If
$$y = (\operatorname{arcosh} x)^2$$
, find $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2}$.

Solution:

$$y = (\operatorname{arcosh} x)^{2}$$

$$\frac{dy}{dx} = 2\operatorname{arcosh} x \times \frac{1}{\sqrt{x^{2} - 1}}$$

$$= 2(x^{2} - 1)^{-\frac{1}{2}} \operatorname{arcosh} x$$

$$\frac{d^{2}y}{dx^{2}} = -(x^{2} - 1)^{-\frac{3}{2}} 2x \operatorname{arcosh} x + 2(x^{2} - 1)^{-\frac{1}{2}} \times \frac{1}{\sqrt{x^{2} - 1}}$$

$$= \frac{-2x \operatorname{arcosh} x}{(x^{2} - 1)^{\frac{3}{2}}} + \frac{2}{x^{2} - 1}$$

Differentiation Exercise B, Question 6

Question:

Find the equation of the tangent at the point where $x = \frac{12}{13}$ on the curve with equation

 $y = \operatorname{artanh} x$.

Solution:

 $y = \operatorname{artanh} x = \frac{12}{13} \quad y = \frac{1}{2} \ln\left(\frac{1+x}{1-x}\right) = \frac{1}{2} \ln 25 = \ln 5$ $\frac{dy}{dx} = \frac{1}{1-x^2} = \frac{1}{1-\left(\frac{12}{13}\right)^2} = \frac{169}{25}$

Tangent is

$$(y-\ln 5) = \frac{169}{25} \left(x - \frac{12}{13} \right)$$

25y-25ln 5 = 169x-156

Differentiation Exercise C, Question 1

Question:

Given that $y = \arccos x$ prove that

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{\sqrt{1-x^2}}$$

Solution:

$$y = \arccos x$$

$$\cos y = x$$

$$-\sin y \frac{dy}{dx} = 1$$

$$\frac{dy}{dx} = \frac{-1}{\sin y}$$

$$= \frac{-1}{\sqrt{1 - \cos^2 y}}$$

since $\cos y = x$

 $\frac{dy}{dt} = \frac{-1}{t}$

$$\frac{v}{\mathrm{d}x} = \frac{1}{\sqrt{1-x^2}}$$

Differentiation Exercise C, Question 2

Question:

Differentiate with respect to x

- **a** $\arccos 2x$
- **b** $\arctan \frac{x}{2}$ **c** $\arcsin 3x$ **d** $\operatorname{arccot} x$
- e arcsec x
- f arccosec x

g
$$\operatorname{arcsin}\left(\frac{x}{x-1}\right)$$

- **h** $\operatorname{arccos} x^2$
- i e^xarccosx
- j arcsin $x \cos x$
- **k** $x^2 \arccos x$
- l e^{arctan x}

Solution:

a Let
$$y = \operatorname{arcos} 2x$$

Let $t = 2x$ $y = \operatorname{arcos} t$
then $\frac{dt}{dx} = 2$ $\frac{dy}{dt} = \frac{-1}{\sqrt{1-t^2}}$
 $\frac{dy}{dx} = \frac{-1}{\sqrt{1-t^2}} \times 2$
 $= \frac{-2}{\sqrt{1-4x^2}}$
b Let $y = \arctan \frac{x}{2}$
Let $t = \frac{x}{2}$ $y = \arctan t$
 $\frac{dt}{dx} = \frac{1}{2}$ $\frac{dy}{dt} = \frac{1}{1+t^2}$
 $\frac{dy}{dx} = \frac{1}{1+t^2} \times \frac{1}{2} = \frac{1}{2\left(1+\frac{x^2}{4}\right)} = \frac{2}{4+x^2}$ or $\frac{2}{x^2+4}$
c Let $y = \arcsin 3x$
 $\sin y = 3x$
 $\cos y \frac{dy}{dx} = 3$
 $\frac{dy}{dx} = \frac{3}{\cos y} = \frac{3}{\sqrt{1-\sin^2 y}}$
 $= \frac{3}{\sqrt{1-9x^2}}$

d Let
$$y = \operatorname{arccotx}$$

 $\operatorname{cot} y = x$
 $-\operatorname{cosec}^2 y \frac{\mathrm{d}y}{\mathrm{d}x} = 1$
 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-1}{\operatorname{cosec}^2 y}$
 $= \frac{-1}{1 + \operatorname{cot}^2 y}$
 $= \frac{-1}{1 + x^2}$
e Let $y = \operatorname{arcsecx}$
 $\operatorname{sec} y = x$
 $\operatorname{sec} y \tan y \frac{\mathrm{d}y}{\mathrm{d}x} = 1$
 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\operatorname{sec} y \tan y}$
 $= \frac{1}{\operatorname{sec} y \sqrt{\operatorname{sec}^2 y - 1}}$
 $= \frac{1}{x\sqrt{x^2 - 1}}$
f Let $y = \operatorname{arccosecx}$
 $\operatorname{cosecy} = x$
 $-\operatorname{cosecy \operatorname{cot} y \frac{\mathrm{d}y}{\mathrm{d}x} = 1$
 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-1}{\operatorname{cosecy \operatorname{cot} y}}$
 $= \frac{-1}{\operatorname{cosecy} \sqrt{(\operatorname{cosec}^2 y - 1)}}$
 $= \frac{-1}{x\sqrt{x^2 - 1}}$
g Let $y = \operatorname{arcsin}\left(\frac{x}{x - 1}\right)$
 $\operatorname{sin} y = \frac{x}{x - 1}$

$$\cos y \frac{dy}{dx} = \frac{-1}{(x-1)^2}$$
$$\frac{dy}{dx} = \frac{1}{\cos y} \times \frac{-1}{(x-1)^2}$$
$$= \frac{1}{\sqrt{1 - \frac{x^2}{(x-1)^2}}} \times \frac{-1}{(x-1)^2}$$
$$= \frac{1}{\sqrt{\frac{(x-1)^2 - x^2}{(x-1)^2}}} \times \frac{-1}{(x-1)^2}$$
$$= \frac{1}{\sqrt{1 - 2x}} \times \frac{-1}{(x-1)^2}$$
$$= \frac{-1}{(x-1)\sqrt{1 - 2x}}$$

h Let
$$y = \arccos^2$$

Let
 $t = x^2$ $y = \arccos t$

i

$$\frac{dt}{dx} = 2x \quad \frac{dy}{dt} = \frac{-1}{\sqrt{1 - t^2}}$$
$$\frac{dy}{dx} = \frac{-1}{\sqrt{1 - t^2}} \times 2x$$
$$= \frac{-2x}{\sqrt{1 - x^4}}$$
Let $y = e^x \arccos x$
$$\frac{dy}{dt} = e^x \arccos x - e^x - \frac{1}{2}$$

$$\frac{dy}{dx} = e^x \arccos x - e^x \frac{1}{\sqrt{1 - x^2}}$$
$$= e^x \left(\arccos x - \frac{1}{\sqrt{1 - x^2}} \right)$$

j Let
$$y = \arcsin x \cos x$$

$$\frac{dy}{dx} = \frac{1}{\sqrt{1 - x^2}} \cos x + \arcsin x - \sin x$$
$$= \frac{\cos x}{\sqrt{1 - x^2}} - \sin x \arcsin x$$

k Let
$$y = x^2 \arccos x$$

$$\frac{dy}{dx} = 2x \arccos x - x^2 \times \frac{1}{\sqrt{1 - x^2}}$$

$$= 2x \arccos x - \frac{x^2}{\sqrt{1 - x^2}}$$

$$= x \left(2 \arccos x - \frac{x}{\sqrt{1 - x^2}} \right)$$

1 Let $y = e^{\operatorname{arctany}}$

$$\frac{dy}{dx} = \frac{e^{\arctan x}}{1+x^2}$$

Differentiation Exercise C, Question 3

Question:

If
$$\tan y = x \arctan x$$
, find $\frac{\mathrm{d}y}{\mathrm{d}x}$.

Solution:

$$\tan y = x \arctan x$$
$$\sec^2 y \frac{dy}{dx} = \arctan x + \frac{x}{1+x^2}$$
$$\frac{dy}{dx} = \frac{1}{\sec^2 y} \left(\arctan x + \frac{x}{1+x^2} \right)$$
$$= \frac{1}{1+x^2 \left(\arctan x \right)^2} \left(\arctan x + \frac{x}{1+x^2} \right)$$

Differentiation Exercise C, Question 4

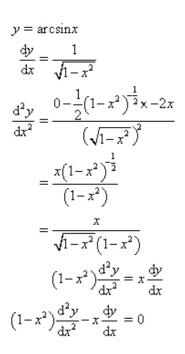
Question:

Given that $y = \arcsin x$ prove that

$$(1-x^2)\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} - x\frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

[E]

Solution:



Differentiation Exercise C, Question 5

Question:

Find an equation of the tangent to the curve with equation $y = \arcsin 2x$ at the point

where $x = \frac{1}{4}$.

Solution:

$$y = \arcsin 2x \quad x = \frac{1}{4} \quad y = \arcsin \left(\frac{2}{4}\right) = \frac{\pi}{6}$$
$$\frac{dy}{dx} = \frac{2}{\sqrt{1 - 4x^2}} = \frac{2}{\sqrt{1 - \frac{1}{4}}} = \frac{4}{\sqrt{3}}$$
$$\text{Tangent is}$$
$$\left(y - \frac{\pi}{6}\right) = \frac{4}{\sqrt{3}} \left(x - \frac{1}{4}\right)$$
$$\sqrt{3}y - \frac{\pi\sqrt{3}}{6} = 4x - 1$$

Differentiation Exercise D, Question 1

Question:

Given $y = \cosh 2x$, find $\frac{dy}{dx}$.

Solution:

 $y = \cosh 2x$ $\frac{\mathrm{d}y}{\mathrm{d}x} = 2\sinh 2x$

Differentiation **Exercise D, Question 2**

Question:

Differentiate with respect to x.

- **a** arsinh 3x
- **b** $\operatorname{arsinh} x^2$
- **c** $\operatorname{arcosh} \frac{x}{2}$
- **d** $x^2 \operatorname{arcosh} 2x$

Solution:

a
$$y = \operatorname{arsinh} 3x$$

Let $t = 3x$ $y = \operatorname{arsinh} t$
 $\frac{dt}{dx} = 3$ $\frac{dy}{dt} = \frac{1}{\sqrt{t^2 + 1}}$
 $\frac{dy}{dx} = \frac{1}{\sqrt{t^2 + 1}} \times 3$
 $= \frac{3}{\sqrt{9x^2 + 1}}$
b $y = \operatorname{arsinh} x^2$
Let $t = x^2$ $y = \operatorname{arsinh} t$
 $\frac{dt}{dx} = 2x$ $\frac{dy}{dt} = \frac{1}{\sqrt{t^2 + 1}}$
 $\frac{dy}{dt} = \frac{1}{\sqrt{t^2 + 1}} \times 2x$
 $= \frac{2x}{\sqrt{x^4 + 1}}$
c $y = \operatorname{arcosh} \frac{x}{2}$
Let $t = \frac{x}{2}$ $y = \operatorname{arcosh} t$
 $\frac{dt}{dx} = \frac{1}{2}$ $\frac{dy}{dt} = \frac{1}{\sqrt{t^2 - 1}}$
 $\frac{dy}{dx} = \frac{1}{\sqrt{t^2 - 1}} \times \frac{1}{2}$
 $= \frac{1}{2\sqrt{\frac{x^2}{4} - 1}} = \frac{1}{\sqrt{x^2 - 4}}$
d $y = x^2 \operatorname{arcosh} 2x + x^2 \times \frac{2}{\sqrt{4x^2 - 1}}$
 $= 2x \left(\operatorname{arcosh} 2x + \frac{x}{\sqrt{4x^2 - 1}} \right)$

$$=2x$$
 $\left[\frac{a \cos(2x+\sqrt{4x})}{\sqrt{4x}} \right]$

Differentiation Exercise D, Question 3

Question:

Given that $y = \arctan x$, prove that

 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{1+x^2}$

Solution:

 $y = \arctan x$ then $\tan y = x$ $\tan y = x$ $\sec^2 y \frac{dy}{dx} = 1$ $\frac{dy}{dx} = \frac{1}{\sec^2 y}$ but $\sec^2 y = 1 + \tan^2 y = 1 + x^2$ $\sec^2 \frac{dy}{dx} = \frac{1}{1 + x^2}$

Differentiation Exercise D, Question 4

Question:

Given that $y = (\operatorname{arsinh} x)^2$ prove that

$$(1+x^2)\frac{d^2y}{dx^2} + x\frac{dy}{dx} - 2 = 0$$

Solution:

$$y = (\operatorname{arsinh} x)^{2}$$

$$\frac{dy}{dx} = \frac{2(\operatorname{arsinh} x)^{1}}{\sqrt{x^{2} + 1}}$$

$$\frac{d^{2}y}{dx^{2}} = \frac{\frac{2}{\sqrt{x^{2} + 1}} \times \sqrt{x^{2} + 1} - \frac{1}{2}(x^{2} + 1)^{-\frac{1}{2}} \times 2x \times 2\operatorname{arsinh} x}{(\sqrt{x^{2} + 1})^{2}}$$

$$(x^{2} + 1)\frac{d^{2}y}{dx^{2}} = 2 - 2x(x^{2} + 1)^{-\frac{1}{2}}\operatorname{arsinh} x$$

$$= 2 - x\frac{dy}{dx}$$

$$(x^{2} + 1)\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} - 2 = 0$$

Differentiation Exercise D, Question 5

Question:

Given $y = 5\cosh x - 3\sinh x$ **a** find $\frac{dy}{dx}$

dx **b** find the minimum turning points.

Solution:

$$y = 5\cosh x - 3\sinh x$$

$$\frac{dy}{dx} = 5\sinh x - 3\cosh x$$
At maximum and minimum $\frac{dy}{dx} = 0$

$$0 = 5\sinh x - 3\cosh x$$

$$3\cosh x = 5\sinh x$$

$$\frac{3}{5} = \tanh x$$

$$x = \operatorname{artanh} \frac{3}{5}$$
Use $\operatorname{artanh} x = \frac{1}{2}\ln\left(\frac{1+x}{1-x}\right)$

$$x = \frac{1}{2}\ln\left(\frac{\frac{8}{5}}{\frac{2}{5}}\right)$$

$$x = \frac{1}{2}\ln 4$$

$$= \ln 2$$

$$y = 6\frac{1}{4} - 2\frac{1}{4}$$

$$= 4$$

$$\Rightarrow \operatorname{turning point is (ln2, 4)}$$

$$\frac{d^2 y}{dx^2} = 5\cosh x - 3\sinh x = 4 \text{ at } x = \ln 2$$

$$\therefore \frac{d^2 y}{dx^2} > 0 \text{ at (ln2, 4) so this point is a minimum}$$

Differentiation Exercise D, Question 6

Question:

Given that $y = (\arcsin x)^2$ show that

$$(1 - x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} - 2 = 0$$

Solution:

$$y = (\arcsin x)^{2}$$

$$\frac{dy}{dx} = 2(\arcsin x)\frac{1}{\sqrt{1-x^{2}}}$$

$$\frac{d^{2}y}{dx^{2}} = \frac{2x\frac{1}{\sqrt{1-x^{2}}} \times \sqrt{1-x^{2}} - 2\arcsin x \times \frac{1}{2}(1-x^{2})^{-\frac{1}{2}} \times -2x}{(1-x^{2})}$$

$$(1-x^{2})\frac{d^{2}y}{dx^{2}} = 2 + \frac{x \times 2\arcsin x}{(1-x^{2})^{\frac{1}{2}}}$$

$$= 2 + x\frac{dy}{dx}$$

$$(1-x^{2})\frac{d^{2}y}{dx^{2}} - x\frac{dy}{dx} - 2 = 0$$

Differentiation Exercise D, Question 7

Question:

Differentiate $\operatorname{arcosh}(\sinh 2x)$.

Solution:

$$y = \operatorname{arcosh}(\sinh 2x)$$

Let $t = \sinh 2x$ $y = \operatorname{arcosh}t$
$$\frac{dt}{dx} = 2\cosh 2x$$
 $\frac{dy}{dt} = \frac{1}{\sqrt{t^2 - 1}}$
$$\frac{dy}{dx} = \frac{1}{\sqrt{t^2 - 1}} \times 2\cosh 2x$$

$$= \frac{2\cosh 2x}{\sqrt{\sinh^2 2x - 1}}$$

Differentiation Exercise D, Question 8

Question:

Given that $y = x - \arctan x$, prove that $\frac{d^2 y}{dx^2} = 2x \left(1 - \frac{dy}{dx}\right)^2$

Solution:

 $y = x - \arctan x$

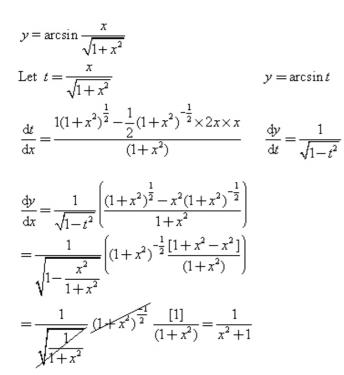
$$\frac{dy}{dx} = 1 - \frac{1}{1 + x^2}$$
$$\frac{d^2 y}{dx^2} = 0 - \frac{(0 - 2x)}{(1 + x^2)^2}$$
$$= \frac{2x}{(1 + x^2)^2}$$
$$= 2x \left(1 - \left(1 - \frac{1}{1 + x^2}\right)\right)^2$$
$$\frac{d^2 y}{dx^2} = 2x \left(1 - \frac{dy}{dx}\right)^2$$

Differentiation Exercise D, Question 9

Question:

Differentiate $\arcsin \frac{x}{\sqrt{1+x^2}}$.

Solution:



Differentiation Exercise D, Question 10

Question:

Show that the curve with equation $y = \operatorname{sech} x$ has $\frac{d^2 y}{dx^2} = 0$ at the point where $x = \pm \ln p$ and state a value of p.

Solution:

$$y = \operatorname{sech} x$$

$$\frac{dy}{dx} = -\tanh \operatorname{xsech} x$$

$$\frac{d^2y}{dx^2} = \operatorname{sech}^2 \operatorname{xsech} x + \tanh x(-\tanh x \operatorname{sec} x)$$

$$= \operatorname{sech}^3 x - \operatorname{sech} x \tanh^2 x$$

$$= \operatorname{sech} x(\operatorname{sech}^2 x - \tanh^2 x)$$

$$= \operatorname{sech} x(1 - \tanh^2 x - \tanh^2 x)$$

$$= \operatorname{sech} x(1 - 2\tanh^2 x)$$
When $\frac{d^2y}{dx^2} = 0$

$$0 = \operatorname{sech} x(1 - 2\tanh^2 x)$$
so $\tanh^2 x = \frac{1}{2} \Rightarrow \tanh x = \pm \frac{1}{\sqrt{2}}$

$$x = \operatorname{artanh} \pm \frac{1}{\sqrt{2}} = \pm \operatorname{artanh} \left(\frac{1}{\sqrt{2}}\right)$$

$$x = \pm \frac{1}{2} \ln \left(\frac{1 + \frac{1}{\sqrt{2}}}{1 - \frac{1}{\sqrt{2}}}\right)$$

$$= \pm \frac{1}{2} \ln \left(\frac{\sqrt{2} + 1}{\sqrt{2} - 1}\right)$$

$$= \pm \frac{1}{2} \ln \left(\frac{\sqrt{2} + 1}{\sqrt{2} - 1}\right)$$

$$= \pm \frac{1}{2} \ln \left(\frac{\sqrt{2} + 1}{\sqrt{2} - 1}\right)$$

$$= \pm \frac{1}{2} \ln \left(\frac{\sqrt{2} + 1}{\sqrt{2} - 1}\right)$$

$$= \pm \frac{1}{2} \ln \left(\frac{\sqrt{2} + 1}{\sqrt{2} - 1}\right)$$

$$= \pm \ln \left(\sqrt{2} + 1\right)^2$$

$$= \pm \ln \left(\sqrt{2} + 1\right)$$

Differentiation Exercise D, Question 11

Question:

Find the equation of the tangent and normal to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ at the point $(a \cosh q, b \sinh q)$.

Solution:

 $x = a \cosh q \quad y = b \sinh q$ $\frac{dy}{dx} = \frac{b \cosh q}{a \sinh q}$ Equation of tangent $y - b \sinh q = \frac{b \cosh q}{a \sinh q} (x - a \cosh q)$ $ay \sinh q - ab \sinh^2 q = xb \cosh q - ab \cosh^2 q$ $ay \sinh q - xb \cosh q + ab (\cosh^2 q - \sinh^2 q) = 0$ $ay \sinh q - xb \cosh q + ab = 0$ Equation of normal $y - b \sinh q = -\frac{a \sinh q}{b \cosh q} (x - a \cosh q)$ $by \cosh q - b^2 \sinh q \cosh q = -ax \sinh q + a^2 \sinh q \cosh q$ $ax \sinh q + by \cosh q - \sinh q \cosh q (a^2 + b^2) = 0$